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The present paper contains an analysis of the model of a porous material proposed 
in part 1, and carries out calculations which allow comparison between theory 
and the experiments described therein. The relevant boundary conditions to 
be applied at  an interface between a fluid and such a material are considered. 

1. Introduction and basic equations 
We consider the flow produced above a corrugated surface by a plane surface 

moving parallel to the corrugations at  a fixed distance from it. Take rectangular 
Cartesian co-ordinates (5, y, a) ,  with the a axis in the direction of the motion and 
the corrugations. Writing z = x + iy and assuming a symmetry and a periodicity 
in the geometry in the direction perpendicular to the motion, we have the situa- 
tion sketched in the z plane of figure 1. 

There is just one velocity component, u, in the x direction which is harmonic 
and, therefore, expressible as u = Re{$@)} where $(z )  is an analytic function of z 
in the flow domain. By the periodicity we can consider just the region bounded 
by ABDC in the figure, provided we ensure that u attains equal values at  cor- 
responding points of AC and BD. On AB, u = U while on CD, u = 0. 

The quantity of interest in the present context is the total force, F,  exerted 
on the portion AB of the plane, per unit length in the x direction, and this is 

where [I5 denotes the change in the bracketed quantity in moving from A to B. 
The flow domain may be mapped onto the interior of a rectangle in the 5 plane, 

the points A ,  B, D,  Cgoing to the vertices - 1 + ic, + 1 +icy + 1, - 1 respectively, 
as in figure 1, by z =f(c), wheref(5) is analytic in the interior. We use the same 
letters for corresponding points in the different pIanes throughout the analysis. 
Defining a(<) = q5(f([)), the real part of this function takes the value U on AB, 
zero on CD, and takes equal values at points with equal ordinates on AC and BD 
(by the symmetry). The solution here is thus Q(5) = -iUc/c, whence 

F = ~,uU/C. (1.2) 

Thus the required force is determined by a simple geometric property; we con- 
formally map the flow domain onto a rectangle with ABDC going to the vertices, 
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and the ratio of the sides then gives the results immediately. Using the 
standard nomenclature of function theory, $c is the extremal length of the set 
of curves in the domain which join AB to CD. 

A 
; u = U  
I 
I 
I 

B 
I 

I 
I 
I - x  
I A 

2. Analysis for a grooved plate 
Consider now the particular case when the flow region ABDC has the form of 

the z plane of figure 2. This corresponds to a lower surface consisting of infinitely 
deep grooves of width s, separated by a distance t ,  in a flat plate, and differs 
from the geometry used in the experiments of part 1 only in the infinite depth 
of the grooves. The actual experiment used grooves whose depth-to-width ratio 
was 4, but it is shown in the appendix that the error involved in this simplification 
is negligible. The gap between the plates is denoted by g. 

The mean force per unit area of plate is 

F 2pU 
t + s  c( t+s) '  

In  the experiment, with the disk of radius R rotating at angular velocity a, we 
therefore expect the disk to experience a torque of magnitude 
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the transition from the linear model to the circular motion being valid for t + s < R 
and negligible inertia forces. Thus the geometric parameter, c, is related to the 
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torque by 

The particular geometry of the z plane in figure 2 has been considered by Cock- 
croft (1927) in the context of an electrostatic problem, but the details are not 
pursued sufficiently far there for our purposes. In order to maintain the notation 
adopted by Beavers & Joseph (1  967) and used in part 1, with k the Darcy con- 
stant and a the dimensionless quantity appearing in the boundary conditions, 
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it is necessary to adopt a slightly non-standard convention for the elliptic 
functions. We use the Jacobian elliptic functions snv = sn (v; I ) ,  en v = en (v; I )  
and dn v = dn (v; 1) of modulus I ,  where 1 is real and 0 6 1 6 1; the comple- 
mentary modulus I' = (1  -I2)&; the complete elliptic integral K(I)  and its 
complement K'(1) = K(Z'); the elliptic integral of the third kind in Jacobi's form 
II(v,p) = II(v,p;Z); Jacobi's zeta function Z(v) = Z(v;Z) and Jacobi's theta 
function O(v) = O(v; I ) .  The requisite definitions and properties of these functions 
can be found in Cayley (1 895), Copson (1935) or Milne-Thomson (1950). Whenever 
the modulus is omitted it is understood to be I .  
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By means of the Schwarz-Christoffel transformation 

d a  

where H is a real constant, the z plane of figure 2 is mapped onto the upper half 
of the a plane of figure 2, with a correspondence of points as shown. 

Since 1 < sn (p; I )  < 1/Z we have 

,8 = K(E) - iy  for y real and 0 6 y 6 K'(I). (2.4) 

(2.5) 

It proves convenient to introduce a further variable, 7, by 

so that the domain of variation of r is the rectangle of figure 2. Then the transfor- 
mation directly from r to z is 

a = sn (7; a ) ,  

The elliptic integral II(r, ,8) is related to the theta and zeta functions of Jacobi 
by (Copson 1935, p. 408) 

W7-B n (7,p) = $log ___ @(r +p) + 72(8). 
The physically given parameters s, t and g are related to the parameters €3, 1 

and p (or y )  of the mapping by rather complex expressions which we proceed to 
derive. 
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Near IT = 1/1snp the mapping (2.3) behaves as 

and hence 
s in dnp - = -  

2H 2 Psnpcnp‘  

The point J has x = i t  and corresponds to 7 = K .  Since O(7) is an even function of 
period 2K (Copson, p. 405), (2.7) implies that 

whence (2.6) implies 
rI(K,P) = KZ(P), 

t - = K [I- 
2H 12 sn /3 cn @ 

The point Q has z = ig and corresponds to T = iK’. Using known properties of 
O(7) (Copson, pp. 405-406) we have 

@(iK’-p) = - exp (in,8/K) = exp (ny /K) ,  
O(iK’+p) 

so that (2.6) gives 

(2.10) 

Equations (2.8), (2.9) and (2.10) serve to determine H ,  I and /3 = K - i y  in 
terms of s, t and g. Dividing (2.9) by (2.8) leads to 

(2.11) 

For a particular value of t / s ,  (2.11) relates ~3 to I. Then (2.8), (2.9) and (2.10) 
combine to  give 

(2.12) 

yielding the corresponding value of g/s. The mapping from the CT plane of figure 2 
to the <plane of figure 1 is effected by 

and hence (2.13) 

leading to the couple for that particular value of 91s via (2.2). As I + 1 ,  then y-+ 0, 
g/s -+ 0 and G +  00. As I -+ 0, then y -+ co, gls -+ 00 and G -+ 0. 

The particular geometry of interest for comparison with the experiments of 
part 1 has tls = 4. Writing this, and p = K -iy, in (2.11), while changing the 
arguments of the elliptic functions to y by the usual formulae, we get 

(2.14) 
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A similar insertion in (2.12) leads to 

g 1K’ 1.7 - - - _ _  +-- 
t+s  6 K  3 K ’  

(t + s )  G 1 K(dn (7; Z’)) 
77pQR4 c K‘(dn (7; 1 ’ ) )  * 

while (2.13) gives 

- -  

- c o s h y  -1 
I I 
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+ l  +cosh y 
I I > 

(2.15) 

(2.16) 

For 0.05 < l2  < 0.95, (2.14) was solved by interpolation and iteration via the 
tables of Milne-Thompson (1950). Then (2.15) and (2.16) gave the couple for the 
range of g/(t +s) between 0.14 and 0.78, the tables of Eagle (1958) being used to 
determine KIK’ where relevant. 

Outside this range, interpolation from available tables to solve (2.14) becomes 
inaccurate, but asymptotic forms of the solution for large and small gaps can be 
obtained to cover the remaining values. While these can be derived by a limiting 
process on (2.14) it is instructive to consider a more direct approach. 
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FIGURE 3. z plane and plane for the asymptotic analysis with a small gap. 

3. Asymptotic solution for a small gap 
For small values of g in the z plane of figure 2 the dominant contributions to 

the force, F ,  arise from two separate regions. The narrow gap above the ridge 
of width t makes a contribution pUt/g,  while the contribution from above the 
groove may be estimated as equal to that for the case of infinitely thin plates 
(t = 0) sketched as the z plane in figure 3. This is the ‘mathematical paint brush’ 
treated by Taylor (1960), but with a non-zero gap. 

This flow region is mapped by 6 = sin (nz/s)  onto the upper half of the 6 plane, 
as shown in figure 3. The mapping onto the rectangle in the 5 plane of figure 1 
via an elliptic function thus produces 

Thus, for g small in the actual problem, we expect 
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For the particular case t /s  = Q this leads to 

For g / ( t + S )  = 0.14 this agrees with the calculations from tables via (2.14) to 
better than 0.3 %, and hence was used for all lower values of g. In  fact, for 1 > 0.9 
we have the asymptotic result 

(3.3) 

t o  better than 0.3 %, and this too facilitates the computations. 

4. Asymptotic solution for a large gap 
For this limit we consider a shear flow over the grooves as shown in the z plane 

of figure 4. With u = Re ( i5 (x)>  we require $(z) N - ~ K Z  as y -+ +-a for a shear of 
magnitude K at large distances, while u = 0 on CIJD and u takes equal values 
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FIGURE 4. z plane and 7;) plane for the asymptotic analysis with a large gap. 

at points with equal ordinates on AC and BD. This flow region maps onto the 
upper half of the 7 plane of figure 4 by (Kober 1957), 

The function ~ ( 7 )  = $(w(q)) has zero real part on CD, satisfies symmetry con- 
ditions on AC and BD, and 

log7 as 171 -+a. t + s  
x(7) n K  

( t + S ) K  Thus x(7 )  = 2n log(Zy2- 1 +27 ( 7 2 -  1)i) .  
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Expanding (4.1) and (4.2) for large 171 we get the behaviour of # ( x )  for large y 
as 

$ ( Z )  N - i K Z + -  (t + 271 [ ( 1  - a2)tlog (2  -az+,2;1 -a2)t )+2loga], (4.3) 

to within exponentially small terms. The second term here is the slip velocity 
U, discussed in part 1. In terms of s and t this is 

K 
UB = [tlogt + ( t  + 28)log(t + 2s) - 2 ( t  + 8) log (t +8)]. (4.4) 
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FIUTJRE 5. Variation of the slip velocity U3 for large gaps with the ratio s/t 

and the velocity gradient K. 

As s + 0 (no grooves at  all) we get UB + 0. As  t -+ 0 (plates of zero thickness) we 
get UB -+ (SK/27l)  log 2. Since UB is a physical quantity readily visualized, we 
plot, in figure 5, TUB/K(t + s)  as a function of si t  obtained from (4.4). Note that the 
limiting value of log 2 for s / t  -+ co is attained incredibly slowly; at  s/t = 100 its 
value is still 5 yo away from the asymptotic value. Also, in the range s/t = 0(1) ,  
UB shows a strong dependence on s/t. 

For the particular value t/s = t used previously, this result gives 

u, = 0*07722~(t + 8). 
For large 9, the plate velocity is then asymptotically 

u = !& N Kg + UB = K [ g  + 0*07722(t f S)], 

and the force per unit area on the plate is PIC. Integrating up to give the torque 
we reach 

1 
N- 

(t+s) G 
7rpQfi4 0-1544+2g/(t+s)' (4.5) 

For g/ ( t+s)  = 0.78 this agrees with the calculations from tables via (2.14) to 
better than 0.4% and hence was used for all higher values of g. 
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In  this manner the curve of figure 4 of part 1 was plotted of ( t  + s) G/n,uf2R4 
against ( t  + s ) / g  over the whole range. For the case of plane parallel plates (s = 0) 
a similar plot gives a straight line of gradient 8. 

5. Boundary conditions at a porous surface 
The assumption made by Beavers & Joseph (1967) is, in the present context, 

where k is the Darcy constant and a a dimensionless number which should depend 
only on the nature of the surface. For the particular model of a porous material 
adopted here, 

83 k=- 
1 2 ( t + s ) ’  

The mean force per unit area on the plate is 

whence an integration yields 
U-UB 2g ( t + s ) G  - u ( t  +s)  7rpSZR4 ’ (5 .3)  

the ratio U,lU being independent of the point on the disk. The quantity 
( U  - UB)/U is plotted as a function of g / ( t+s )  from (5.3) and the previously 
obtained data, in figure 5 of part 1 for the particular case t / s  = 4. It approaches 
unity for large gaps and Q( = t / ( t  + s)) for small gaps. 

From (5.1)) (5.2)’ (5 .3 )  and the previous data, it is a simple matter to compute 
the variation of a with g for the value t / s  = *. This is shown in figure 6 of part 1 ; 
the asymptotic value of 2.035 is reached effectively a t  g / ( t  + s) = 0.5, but a 
shows a rapid increase for lower values of 9. 

From the analysis of $4 it follows that the limiting value of a as g -+ 00 for gen- 
eral values of s / t  is given by 

277 k3 
a- 

t log t + ( t  + 2s) log ( t  + 2s) - 2 ( t + s )  log (t  + s) * (5 .4 )  

This variation of the asymptotic value o f a  with s / t  is plotted in figure 7 of part 1. 
As s / t  -+ 0, we get a -+ 00, while as s/t  4 00 we get a -+ n/3tlog4 = 1.308, this 
limit being attained rather slowly. 

The author would like to thank Sir Geoffrey Taylor for providing the initial 
incentive for these calculations, and for many subsequent stimulating discussions. 
The work was carried out while in receipt of an I.C.I. Post-doctoral Research 
Fellowship. 
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Appendix 
We here make an estimate of the errors introduced by assuming in the analysis 

that the grooves are infinitely deep. For this purpose, it  is evident that the 
greatest error in estimating the actual stress at  the moving plane occurs when 

A plane 

t Y 
z plane 

FIGURE 6. z plane and h plane for the error estimation. 

g = 0 and we therefore consider the problem sketched in the z plane of figure 6 
in a rectangular channel of depth L, with u 3 Re{$(z)} = U on AB, and u = 0 
on ARSB. The mapping to the h plane of figure 6 is effected by 

2L K’(Z) 2 K ( E ) z  where - z- 
s K(I) ’ h = sn- 

S 

and in this plane the problem is solved by the function 

so that we obtain the actual value of the velocity gradient on AB as 

- -- 4U K(Z) [an7z/cnsx]. 2K(l) 2KV) 

The approximation of L -+ 03 produces a result which may be derived as a limit 
of this, from $3  via the limit g + 0, or from Taylor (1960), as 

2 u  7rx 
N -sec-. 

S 

Hence the ratio of the actual stress to the approximate stress is 

This ratio is unity at  x = f- +s and has a maximum of (2/n) K(Z) at x = 0. Thus a 
suitably simple estimate of the relative error, E,  is provided by 

2 L 1 K’(Z) 
7r s 2 K(2) * E = - K ( l )  where - = -- 

Certainly, the error in the force, P, and couple, G, obtained by integrating the 
stress must be less than this. For small I 

K ( Z )  in(i + p+ o(z4)). (A 2) 
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Using (3.3) and (A 2) we get 

). (A 3) E = 1 + 4 e-PnL/s + O(e-4nUS 

In the actual experiment L/s  = 4, so that the error is O(4 e-8n) < 10-lo, this value 
being well within the range of validity of the approximations (3.3) and (A2). 
Thus the simplifications of infinite depth used in the calculations involve a 
negligible error. 
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